Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.275
1.
Nat Commun ; 15(1): 4060, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744819

Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.


Dynamin I , Endocytosis , Protein Isoforms , Animals , Dynamin I/metabolism , Dynamin I/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , PC12 Cells , Rats , Neurons/metabolism , Mice , Cell Membrane/metabolism , Calcineurin/metabolism
2.
J Virol ; 98(5): e0001624, 2024 May 14.
Article En | MEDLINE | ID: mdl-38563732

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Calcineurin , Calcium , Immunity, Innate , Interferon Type I , Newcastle disease virus , Protein Serine-Threonine Kinases , Virus Replication , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Newcastle disease virus/immunology , Animals , Calcineurin/metabolism , Humans , Calcium/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Phosphorylation , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/metabolism , Calcium Signaling , Cell Line , HEK293 Cells
3.
J Physiol ; 602(10): 2179-2197, 2024 May.
Article En | MEDLINE | ID: mdl-38630836

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Calcineurin , Neurons , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Receptors, AMPA , Tacrolimus , Animals , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Calcineurin/metabolism , Male , Tacrolimus/pharmacology , Rats , Neurons/physiology , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Calcium/metabolism , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects , Calcineurin Inhibitors/pharmacology , Synapses/physiology , Synapses/drug effects , Synapses/metabolism
4.
J Biol Chem ; 300(4): 107209, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519029

FOXO1 is a transcription factor and potential tumor suppressor that is negatively regulated downstream of PI3K-PKB/AKT signaling. Paradoxically, FOXO also promotes tumor growth, but the detailed mechanisms behind this role of FOXO are not fully understood. In this study, we revealed a molecular cascade by which the Thr24 residue of FOXO1 is phosphorylated by AKT and is dephosphorylated by calcineurin, which is a Ca2+-dependent protein phosphatase. Curiously, single nucleotide somatic mutations of FOXO1 in cancer occur frequently at and near Thr24. Using a calcineurin inhibitor and shRNA directed against calcineurin, we revealed that calcineurin-mediated dephosphorylation of Thr24 regulates FOXO1 protein stability. We also found that FOXO1 binds to the promoter region of MDM2 and activates transcription, which in turn promotes MDM2-mediated ubiquitination and degradation of p53. FOXO3a and FOXO4 are shown to control p53 activity; however, the significance of FOXO1 in p53 regulation remains largely unknown. Supporting this notion, FOXO1 depletion increased p53 and p21 protein levels in association with the inhibition of cell proliferation. Taken together, these results indicate that FOXO1 is stabilized by calcineurin-mediated dephosphorylation and that FOXO1 supports cancer cell proliferation by promoting MDM2 transcription and subsequent p53 degradation.


Calcineurin , Cell Proliferation , Forkhead Box Protein O1 , Proteolysis , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Calcineurin/metabolism , Calcineurin/genetics , Phosphorylation , Ubiquitination , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Protein Stability
5.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38507409

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Calcineurin , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Homeostasis , Synapses , Animals , Synapses/metabolism , Synapses/physiology , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Long-Term Synaptic Depression/physiology , Neurons/metabolism , Neurons/physiology , Mice
6.
PLoS One ; 19(3): e0295700, 2024.
Article En | MEDLINE | ID: mdl-38457407

Mechanical overloading (OVL) resulting from the ablation of muscle agonists, a supra-physiological model of resistance training, reduces skeletal muscle fragility, i.e. the immediate maximal force drop following lengthening contractions, and increases maximal force production, in mdx mice, a murine model of Duchene muscular dystrophy (DMD). Here, we further analyzed these beneficial effects of OVL by determining whether they were blocked by cyclosporin, an inhibitor of the calcineurin pathway, and whether there were also observed in the D2-mdx mice, a more severe murine DMD model. We found that cyclosporin did not block the beneficial effect of 1-month OVL on plantaris muscle fragility in mdx mice, nor did it limit the increases in maximal force and muscle weight (an index of hypertrophy). Fragility and maximal force were also ameliorated by OVL in the plantaris muscle of D2-mdx mice. In addition, OVL increased the expression of utrophin, cytoplamic γ-actin, MyoD, and p-Akt in the D2-mdx mice, proteins playing an important role in fragility, maximal force gain and muscle growth. In conclusion, OVL reduced fragility and increased maximal force in the more frequently used mild mdx model but also in D2-mdx mice, a severe model of DMD, closer to human physiopathology. Moreover, these beneficial effects of OVL did not seem to be related to the activation of the calcineurin pathway. Thus, this preclinical study suggests that resistance training could have a potential benefit in the improvement of the quality of life of DMD patients.


Cyclosporins , Muscular Dystrophy, Duchenne , Resistance Training , Humans , Animals , Mice , Muscular Dystrophy, Duchenne/pathology , Mice, Inbred mdx , Calcineurin/metabolism , Quality of Life , Muscle, Skeletal/metabolism , Cyclosporins/pharmacology , Disease Models, Animal
8.
mBio ; 15(4): e0039224, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38411085

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


COVID-19 , SARS-CoV-2 , Signal Transduction , Viral Nonstructural Proteins , Humans , Antiviral Agents , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , COVID-19/virology , Cyclosporine/pharmacology , NFATC Transcription Factors/metabolism , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism
9.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338818

TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.


Calcineurin , Heart Failure , TRPV Cation Channels , Ventricular Remodeling , Animals , Mice , Calcineurin/metabolism , Cells, Cultured , Fibrosis , Heart Failure/metabolism , Isoproterenol , Mice, Transgenic , Myocytes, Cardiac/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Ventricular Remodeling/genetics
10.
Cell Death Differ ; 31(2): 217-238, 2024 02.
Article En | MEDLINE | ID: mdl-38238520

Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.


Calcineurin , Drosophila Proteins , Animals , Calcineurin/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Mitophagy/genetics , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Drosophila/metabolism , Protein Serine-Threonine Kinases/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
11.
Plant Cell Environ ; 47(5): 1486-1502, 2024 May.
Article En | MEDLINE | ID: mdl-38238896

For plant growth under salt stress, sensing and transducing salt signals are central to cellular Na+ homoeostasis. The calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) complexes play critical roles in transducing salt signals in plants. Here, we show that CBL5, an ortholog of CBL4 and CBL10 in Arabidopsis, interacts with and recruits CIPK8/CIPK24 to the plasma membrane. Yeast cells coexpressing CBL5, CIPK8/CIPK24 and SOS1 demonstrated lesser Na+ accumulation and a better growth phenotype than the untransformed or SOS1 transgenic yeast cells under salinity. Overexpression of CBL5 improved the growth of the cipk8 or cipk24 single mutant but not the cipk8 cipk24 double mutant under salt stress, suggesting that CIPK8 and CIPK24 were the downstream targets of CBL5. Interestingly, seed germination in cbl5 was severely inhibited by NaCl, which was recovered by the overexpression of CBL5. Furthermore, CBL5 was mainly expressed in the cotyledons and hypocotyls, which are essential to seed germination. Na+ efflux activity in the hypocotyls of cbl5 was reduced relative to the wild-type under salt stress, enhancing Na+ accumulation. These findings indicate that CBL5 functions in seed germination and protects seeds and germinating seedlings from salt stress through the CBL5-CIPK8/CIPK24-SOS1 pathways.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Germination , Calcineurin/genetics , Calcineurin/metabolism , Saccharomyces cerevisiae/metabolism , Seeds , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein Kinases/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Calcium-Binding Proteins/metabolism
12.
Acta Physiol (Oxf) ; 240(3): e14084, 2024 Mar.
Article En | MEDLINE | ID: mdl-38214031

AIM: To place the consequences of calcineurin inhibition in a cardiovascular context. METHODS: Literature review coupled with personal encounters. RESULTS: Calcineurin is a calcium-binding and calmodulin-binding protein that is conserved across evolution from yeast to mammals. The enzyme functions as a calcium-dependent, calmodulin-stimulated protein phosphatase. Its role in regulating physiology has largely been elucidated by observing calcineurin inhibition. Calcineurin inhibition transformed organ transplantation from an experiment into a therapy and made much of general immunotherapy possible. The function of this phosphatase and how its inhibition leads to toxicity concern us to this date. Initial research from patients and animal models implicated a panoply of factors contributing to hypertension and vasculopathy. Subsequently, the role of calcineurin in regulating the effective fluid volume, sodium reabsorption, and potassium and hydrogen ion excretion was elucidated by investigating calcineurin inhibition. Understanding the regulatory effects of calcineurin on endothelial and vascular smooth muscle cell function has also made substantial progress. However, precisely how the increase in systemic vascular resistance arises requires further mechanistic research. CONCLUSION: Calcineurin inhibition continues to save lives; however, options to counteract the negative effects of calcineurin inhibition should be vigorously pursued.


Calcineurin , Cardiovascular System , Animals , Humans , Calcineurin/metabolism , Calcium/metabolism , Calmodulin-Binding Proteins , Cardiovascular System/metabolism , Mammals , Vascular Resistance
13.
J Food Sci ; 89(3): 1727-1738, 2024 Mar.
Article En | MEDLINE | ID: mdl-38258958

Sea cucumber intestines are considered a valuable resource in the sea cucumber processing industry due to their balanced amino acid composition. Studies have reported that peptides rich in glutamate and branched-chain amino acids have anti-fatigue properties. However, the function of the sea cucumber intestine in reducing exercise-induced fatigue remains unclear. In this study, we enzymatically hydrolyzed low molecular weight peptides from sea cucumber intestines (SCIP) and administered SCIP orally to mice to examine its effects on exercise-induced fatigue using swimming and pole-climbing exhaustion experiments. The results revealed that supplementation with SCIP significantly prolonged the exhaustion time of swimming in mice, decreased blood lactate and urea nitrogen levels, and increased liver and muscle glycogen levels following a weight-loaded swimming test. Immunofluorescence analysis indicated a notable increase the proportion of slow-twitch muscle fiber and a significant decrease the proportion of fast-twitch muscle fiber following SCIP supplementation. Furthermore, SCIP upregulated mRNA expression levels of Ca2+ /Calcineurin upstream and downstream regulators, thereby contributing to the promotion of skeletal muscle fiber type conversion. This study presents the initial evidence establishing SCIP as a potential enhancer of skeletal muscle fatigue resistance, consequently providing a theoretical foundation for the valuable utilization of sea cucumber intestines.


Calcineurin , Sea Cucumbers , Mice , Animals , Calcineurin/metabolism , Calcineurin/pharmacology , Sea Cucumbers/metabolism , Muscle, Skeletal/metabolism , Peptides/pharmacology , Swimming/physiology , Signal Transduction , Intestines , Peptide Hydrolases/metabolism
14.
Genetics ; 226(3)2024 Mar 06.
Article En | MEDLINE | ID: mdl-38279937

Adaptation to external environmental challenges at the cellular level requires rapid responses and involves relay of information to the nucleus to drive key gene expression changes through downstream transcription factors. Here, we describe an alternative route of adaptation through a direct role for cellular signaling components in governing gene expression via RNA interference-mediated small RNA production. Calcium-calcineurin signaling is a highly conserved signaling cascade that plays central roles in stress adaptation and virulence of eukaryotic pathogens, including the human fungal pathogen Cryptococcus neoformans. Upon activation in C. neoformans, calcineurin localizes to P-bodies, membraneless organelles that are also the site for RNA processing. Here, we studied the role of calcineurin and its substrates in RNAi-mediated transgene silencing. Our results reveal that calcineurin regulates both the onset and the reversion of transgene silencing. We found that some calcineurin substrates that localize to P-bodies also regulate transgene silencing but in opposing directions. Small RNA sequencing in mutants lacking calcineurin or its targets revealed a role for calcineurin in small RNA production. Interestingly, the impact of calcineurin and its substrates was found to be different in genome-wide analysis, suggesting that calcineurin may regulate small RNA production in C. neoformans through additional pathways. Overall, these findings define a mechanism by which signaling machinery induced by external stimuli can directly alter gene expression to accelerate adaptative responses and contribute to genome defense.


Cryptococcosis , Cryptococcus neoformans , Humans , Cryptococcus neoformans/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Cryptococcosis/microbiology , Transgenes , Fungal Proteins/genetics
15.
BMC Complement Med Ther ; 24(1): 10, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167059

BACKGROUND: Shikonin, a natural naphthoquinone compound extracted from the Chinese traditional herbal medicine "Lithospermum erythrorhizon", possesses antitumor activity against various cancer types. Tumor-suppressor genes (TSGs) negatively regulate cell growth, proliferation, and differentiation, thereby inhibiting tumor formation. However, the molecular mechanism of action of shikonin on TSGs in non-small-cell lung cancer (NSCLC) remains unclear. METHODS: The inhibitory effect of shikonin on the proliferation and migration abilities of lung cancer cells were measured by Cell Counting Kit 8 (CCK8) and wound healing assays. The alteration of genes by shikonin treatment was detected by mRNA high-throughput sequencing and further confirmed by qPCR and western blotting experiments. The dominant functions of the upregulated genes were analyzed by GO and KEGG profiling. RESULTS: Shikonin inhibited the proliferation and migration of A549 and H1299 NSCLC cells in a dose-dependent manner. mRNA high-throughput sequencing revealed a total of 1794 upregulated genes in shikonin-treated NSCLC cells. Moreover, bioinformatic analysis of GO and KEGG profiling revealed that the up-regulated genes were mostly involved in the JNK/P38/MAPK signaling pathway, among which the expression of GADD45B and PPP3CC was significantly enhanced. Finally, we confirmed that GADD45B and PPP3CC were indeed upregulated in JNK/P38/MAPK pathway. CONCLUSIONS: Taken together, these results suggested that shikonin might affect the expression of GADD45B and PPP3CC through the JNK/P38/MAPK pathway, therefore exerting an inhibitory effect on the proliferation and migration of cancer cells. To our knowledge, this is the first study reporting the role of shikonin in upregulating TSGs to activate the JNK/P38/MAPK signaling pathways in NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Naphthoquinones , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Line, Tumor , MAP Kinase Signaling System , Naphthoquinones/pharmacology , Cell Proliferation , RNA, Messenger/metabolism , GADD45 Proteins , Antigens, Differentiation/metabolism , Antigens, Differentiation/pharmacology , Calcineurin/metabolism , Calcineurin/pharmacology
16.
mBio ; 15(2): e0327523, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38193728

The casein kinase 2 (CK2) complex has garnered extensive attention over the past decades as a potential therapeutic target for diverse human diseases, including cancer, diabetes, and obesity, due to its pivotal roles in eukaryotic growth, differentiation, and metabolic homeostasis. While CK2 is also considered a promising antifungal target, its role in fungal pathogens remains unexplored. In this study, we investigated the functions and regulatory mechanisms of the CK2 complex in Cryptococcus neoformans, a major cause of fungal meningitis. The cryptococcal CK2 complex consists of a single catalytic subunit, Cka1, and two regulatory subunits, Ckb1 and Ckb2. Our findings show that Cka1 plays a primary role as a protein kinase, while Ckb1 and Ckb2 have major and minor regulatory functions, respectively, in growth, cell cycle control, morphogenesis, stress response, antifungal drug resistance, and virulence factor production. Interestingly, triple mutants lacking all three subunits (cka1Δ ckb1Δ ckb2Δ) exhibited more severe phenotypic defects than the cka1Δ mutant alone, suggesting that Ckb1/2 may have Cka1-independent functions. In a murine model of systemic cryptococcosis, cka1Δ and cka1Δ ckb1Δ ckb2Δ mutants showed severely reduced virulence. Transcriptomic, proteomic, and phosphoproteomic analyses further revealed that the CK2 complex controls a wide array of effector proteins involved in transcriptional regulation, cell cycle control, nutrient metabolisms, and stress responses. Most notably, CK2 disruption led to dysregulation of key signaling cascades central to C. neoformans pathogenicity, including the Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin signaling pathways. In summary, our study provides novel insights into the multifaceted roles of the fungal CK2 complex and presents a compelling case for targeting it in the development of new antifungal drugs.IMPORTANCEThe casein kinase 2 (CK2) complex, crucial for eukaryotic growth, differentiation, and metabolic regulation, presents a promising therapeutic target for various human diseases, including cancer, diabetes, and obesity. Its potential as an antifungal target is further highlighted in this study, which explores CK2's functions in C. neoformans, a key fungal meningitis pathogen. The CK2 complex in C. neoformans, comprising the Cka1 catalytic subunit and Ckb1/2 regulatory subunits, is integral to processes like growth, cell cycle, morphogenesis, stress response, drug resistance, and virulence. Our findings of CK2's role in regulating critical signaling pathways, including Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin, underscore its importance in C. neoformans pathogenicity. This study provides valuable insights into the fungal CK2 complex, reinforcing its potential as a target for novel antifungal drug development and pointing out a promising direction for creating new antifungal agents.


Cryptococcosis , Cryptococcus neoformans , Diabetes Mellitus , Meningitis, Fungal , Neoplasms , Animals , Mice , Humans , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cryptococcus neoformans/metabolism , Antifungal Agents/metabolism , Calcium/metabolism , Calcineurin/metabolism , Proteomics , Signal Transduction , Cryptococcosis/microbiology , Obesity
17.
Circ Res ; 134(1): 100-113, 2024 01 05.
Article En | MEDLINE | ID: mdl-38084599

BACKGROUND: Cardiac hypertrophy is an intermediate stage in the development of heart failure. The structural and functional processes occurring in cardiac hypertrophy include extensive gene reprogramming, which is dependent on epigenetic regulation and chromatin remodeling. However, the chromatin remodelers and their regulatory functions involved in the pathogenesis of cardiac hypertrophy are not well characterized. METHODS: Protein interaction was determined by immunoprecipitation assay in primary cardiomyocytes and mouse cardiac samples subjected or not to transverse aortic constriction for 1 week. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) experiments were performed on the chromatin of adult mouse cardiomyocytes. RESULTS: We report that the calcium-activated protein phosphatase CaN (calcineurin), its endogenous inhibitory protein carabin, the STK24 (STE20-like protein kinase 3), and the histone monomethyltransferase, MLL3 (mixed lineage leukemia 3) form altogether a macromolecular complex at the chromatin of cardiomyocytes. Under basal conditions, carabin prevents CaN activation while the serine/threonine kinase STK24 maintains MLL3 inactive via phosphorylation. After 1 week of transverse aortic constriction, both carabin and STK24 are released from the CaN-MLL3 complex leading to the activation of CaN, dephosphorylation of MLL3, and in turn, histone H3 lysine 4 monomethylation. Selective cardiac MLL3 knockdown mitigates hypertrophy, and chromatin immunoprecipitation and DNA sequencing analysis demonstrates that MLL3 is de novo recruited at the transcriptional start site of genes implicated in cardiomyopathy in stress conditions. We also show that CaN and MLL3 colocalize at chromatin and that CaN activates MLL3 histone methyl transferase activity at distal intergenic regions under hypertrophic conditions. CONCLUSIONS: Our study reveals an unsuspected epigenetic mechanism of CaN that directly regulates MLL3 histone methyl transferase activity to promote cardiac remodeling.


Calcineurin , Histones , Animals , Mice , Calcineurin/metabolism , Cardiomegaly/metabolism , Chromatin/metabolism , Epigenesis, Genetic , Histones/metabolism , Myocytes, Cardiac/metabolism , Transferases/genetics , Transferases/metabolism , Ventricular Remodeling
18.
Nat Prod Res ; 38(10): 1652-1661, 2024 May.
Article En | MEDLINE | ID: mdl-37226502

An experimental study has been conducted to investigate the efficacy of geraniol (GNL) isolated from lemomgrass in protecting against cardiac toxicity induced by tilmicosin (TIL) in albino mice. Compared to TIL-treated mice, those supplemented with GNL had a thicker left ventricular wall and a smaller ventricular cavity. Studies of TIL animals treated with GNL showed that their cardiomyocytes had markedly changed in diameter and volume, along with a reduction in numerical density. After TIL induction, animals showed a significant increase in the protein expression of TGF-ß1, TNF-α, nuclear factor kappa B (NF-kB), by 81.81, 73.75 and 66.67%, respectively, and hypertrophy marker proteins ANP, BNP, and calcineurin with respective percentages of 40, 33.34 and 42.34%. Interestingly, GNL significantly decreased the TGF-ß1, TNF-α, NF-kB, ANP, BNP, and calcineurin levels by 60.94, 65.13, 52.37, 49.73, 44.18 and 36.84%, respectively. As observed from histopathology and Masson's trichrome staining, supplementation with GNL could rescue TIL-induced cardiac hypertrophy. According to these results, GNL may protect the heart by reducing hypertrophy in mice and modulating biomarkers of fibrosis and apoptosis.


Acyclic Monoterpenes , Cymbopogon , Tylosin/analogs & derivatives , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Calcineurin/metabolism , Calcineurin/pharmacology , Oxidative Stress , Myocytes, Cardiac , Cardiomegaly/metabolism , Cardiomegaly/pathology
19.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Article En | MEDLINE | ID: mdl-37702564

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Calcineurin/metabolism , CD36 Antigens/metabolism , Cyclosporine/adverse effects , Cyclosporine/metabolism , Lipids , Macrophages , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Plaque, Atherosclerotic/chemically induced , Plaque, Atherosclerotic/metabolism
20.
Am J Med Sci ; 367(3): 201-211, 2024 Mar.
Article En | MEDLINE | ID: mdl-37660994

BACKGROUND: Breast cancer (BCa) is the most frequent malignant tumor in women. Long non-coding RNAs (lncRNAs) have been acknowledged to exert critical regulating functions in various cancers. Long intergenic non-protein coding RNA, p53 induced transcript (LINC-PINT) has been reported to be a chemosensitizer and a tumor suppressor in BCa. However, its downstream molecular mechanism contributing to its tumor-suppressing role remains to be explored in BCa. METHODS: LINC-PINT expression in BCa tissues and cells was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The proliferation of transfected BCa cells was examined by counting kit-8 (CCK-8) and EdU assay. The migrating ability of indicate BCa cells was assessed by wound healing assays. Bioinformatics analysis and mechanism experiments such as RNA immunoprecipitation (RIP), RNA pull down assay, and luciferase reporter assay, were applied to demonstrate the downstream targets of LINC-PINT. RESULTS: LINC-PINT was downregulated in BCa tissues and cell lines. Overexpression of LINC-PINT suppressed BCa cell proliferation and migration. LINC-PINT could interact with miR-576-5p to upregulate Meis homeobox 2 (MEIS2) that positively regulated protein phosphatase 3 catalytic subunit gamma (PPP3CC) by inactivating the nuclear factor-κB (NF-κB) pathway. CONCLUSIONS: These findings elucidated the anti-tumor role of LINC-PINT in BCa via the miR-576-5p/MEIS2/PPP3CC/NF-κB axis, which suggested that LINC-PINT might serve as a potential therapeutic target for BCa.


Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Breast Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Calcineurin/genetics , Calcineurin/metabolism
...